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Hundreds of species in one of Australia’s dominant plant families, the Myrtaceae, are at risk from the invasive patho-

genic fungus Austropuccinia psidii. Since its arrival in Australia in 2010, native plant communities have been severely

affected, with highly susceptible species likely to become extinct from recurring infections. While severe impact on Aus-

tralian native and plantation forestry has been predicted, the lemon myrtle industry is already under threat. Commer-

cial cultivars of lemon myrtle (Backhousia citriodora) are highly susceptible to A. psidii. Detecting and monitoring

disease outbreaks is currently only possible by eye, which is costly and subject to human bias. This study aims at devel-

oping a proof-of-concept for automated, non-biased classification of healthy (na€ıve), fungicide-treated and diseased

lemon myrtle trees by means of their spectral reflectance signatures. From a lemon myrtle plantation, spectral signa-

tures of fungicide-treated and untreated leaves were collected using a portable field spectrometer. A third class of spec-

tra, from na€ıve lemon myrtle leaves that had not been exposed to A. psidii, was collected from a botanical garden.

Reflectance spectra in their primary form and their first-order derivatives were used to train a random forest classifier

resulting in an overall accuracy of 78% (kappa = 0.68) for primary spectra and 95% (kappa = 0.92) for first-order

derivative-transformed spectra. Thus, an optical sensor-based discrimination, using spectral reflectance signatures of

this as yet uninvestigated pathosystem, seems technically feasible. This study provides a foundation for the development

of automated, sensor-based detection and monitoring systems for myrtle rust.
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Introduction

Rust fungi and other plant pathogens are affecting
humans and their environment by damaging plants and
their products on which we depend for clothing, housing
and, most importantly, food. Outbreaks of rust fungi
may result in extensive damage to agricultural and for-
estry crops, as seen when a new, highly virulent strain of
Puccinia graminis destroyed tens of thousands of hec-
tares of wheat crops in southern Europe (Bhattacharya,
2017). This study focuses on the rust fungus Austropuc-
cinia psidii (Sphaerophragmiaceae, Pucciniales). In Aus-
tralia, A. psidii causes a disease commonly known as
myrtle rust and is an obligate biotroph and pathogenic
organism in the highly diverse phylum Basidiomycota
(Helfer, 2014). In contrast to most other rust diseases,
myrtle rust has the potential to infect hundreds of differ-
ent species, escalating the potential consequences of
infection.

Myrtle rust has already caused damage to a multitude
of species in South and Central America, its native region
(Coutinho et al., 1998), and to native vegetation in vari-
ous countries between the Americas and Australia
(Loope, 2010). Austropuccinia psidii was first identified
in Australia in 2010, on the central east coast of New
South Wales (NSW; Carnegie et al., 2010). Subsequently,
a single strain of A. psidii (Machado et al., 2015) has
undergone a remarkable range expansion, establishing
along the Australian east coast from NSW to Queens-
land, and with localized distributions in Victoria, Tasma-
nia and Northern Territory (Carnegie et al., 2016;
Berthon et al., 2018). Myrtle rust has since also invaded
New Caledonia (Giblin, 2013), South Africa (Roux
et al., 2013), Indonesia (McTaggart et al., 2016), Singa-
pore (du Plessis et al., 2017) and, most recently, New
Zealand (www.mpi.govt.nz, accessed 02 December
2017).
Although most rust pathogens are limited to infecting

only a few host species (Makinson, 2014), myrtle rust
infects many hundred species, meaning the potential
impact on the Australian flora is very serious. The*E-mail: rene.heim@hdr.mq.edu.au
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Myrtaceae is one of the dominant plant families in the
Australian flora, contributing more than 2000 species
(approximately 10% of the total flora), including iconic,
widespread genera such as Eucalyptus (gum trees) and
Melaleuca (paper barks). About half of all Australian
Myrtaceae occur in climatic zones identified as suitable
for the establishment of myrtle rust (Berthon et al.,
2018). Currently, over 500 host species in 86 Myrtaceae
genera are known worldwide, with 347 of these species
occurring in Australia (Carnegie et al., 2016; Soewarto
et al., 2017). Of the species studied in Australia, includ-
ing those from controlled screening (Potts et al., 2016)
and field-based assessments (Pegg et al., 2014; Carnegie
et al., 2016), 90% have been identified as being suscepti-
ble to A. psidii. Several species have been identified as
being highly susceptible, with severe decline in natural
populations recorded. This includes the common species
Rhodamnia rubescens and Rhodomyrtus psidioides,
where deaths of mature stands have been reported
(Carnegie et al., 2016). Both species, previously listed as
‘least concern’, have now been provisionally listed as
‘critically endangered’ in NSW. The NSW scientific com-
mittee of the Department for Environment and Heritage
has acknowledged myrtle rust as constituting a major
threat to the native Australian environment and the Myr-
taceae, listing it as a ‘key threatening process’ (NSW Sci-
entific Committee, 2011).
Unfortunately, the impact of myrtle rust in Australia

has not been limited to native ecosystems, with industries
reliant on Myrtaceae also affected. Loss of commercial
varieties and trade restrictions, in addition to increased
reliance on fungicides, have severely affected the nursery
and garden industry. The young, expanding lemon myr-
tle industry has also been significantly impacted (Doran
et al., 2012). Backhousia citriodora (lemon myrtle) is a
small to medium-sized tree (2 to 30 m), occurring natu-
rally in Queensland coastal forests from Brisbane to
Mackay. Lemon myrtle leaves are rich in antioxidants,
vitamin E, lutein (a carotenoid compound important for
eye function) and calcium. Lemon myrtle has antimicro-
bial and antifungal properties that are superior to tea
tree oil (Rural Industries Research and Development
Corporation, 2012). Leaves are commercially harvested
to produce lemon-flavoured herbal teas, culinary herbs
or lemon-scented essential oils used for food flavouring
and in personal care products. Cultivars of B. citriodora
currently in use are moderately to highly susceptible to
myrtle rust. Rust-affected leaves of B. citriodora are
unsuitable for its main uses and the application of fungi-
cides to control the disease is undesirable as the market
demands a clean, organic product. A total farm gate
value at between AU$7 million and AU$23 million is
estimated for dried leaf and essential oil, respectively
(Rural Industries Research and Development Corpora-
tion, 2012). Therefore, the industry’s reliance on lemon
myrtle is in urgent need of rust-resistant cultivars or
measures to reduce the use of fungicides. Reports of sus-
ceptibility within the eucalypts (Pegg et al., 2014; Potts
et al., 2016) indicate an escalation of the problem as it

suggests the potential of myrtle rust to affect the forestry
industry in Australia, both native and plantation. In Bra-
zil, commercial plantations of Eucalyptus globulus and
E. viminalis have suffered reduced growth and yield loss
because of myrtle rust incursions (Alfenas et al., 2003).
Myrtle rust forms purplish lesions with abundant

bright, orange-yellow urediniospores on young leaves
and shoots, which may die-back because of rust attack.
Current field identification of these symptoms and dis-
ease incidence assessments for myrtle rust and other
plant pathogens are reliant on trained experts and are
dependent on the experience and performance of individ-
uals that vary considerably, leading to issues with
repeatability (Mahlein, 2016). Thus, disease assessment
is subject to human bias. Automated, sensor-based dis-
ease detection can be performed with high reliability,
sensitivity and specificity and improve the assessment of
disease incidence and severity beyond the processes of
visual disease detection (Mahlein, 2016). To date, no
one has explored sensor-based methods that could detect
these and less obvious symptoms of myrtle rust.
Currently there is increasing interest in using spectral

reflectance measurements (field spectroscopy) to detect
and discriminate plant pathogens in precision agricul-
ture (Mahlein, 2016). Spectral reflectance signatures of
vegetation can indicate biochemical, physiological and
molecular changes caused by abiotic or biotic processes
(Mahlein et al., 2010). Disease symptoms often result
from such changes brought about by pathogens and can
be investigated by analysing spectral reflectance signa-
tures (Bravo et al., 2003; Delalieux et al., 2007;
Mahlein et al., 2010). Mahlein et al. (2010) used reflec-
tance spectra of sugar beet leaves to show that there
was a distinctive differentiation of three sugar beet fun-
gal pathogens, Cercospora beticola (cercospora leaf
spot), Erysiphe betae (powdery mildew) and Uromyces
betae (beet rust). Bravo et al. (2003) built a classifica-
tion model that could discriminate wheat plants infected
with Puccinia striiformis (yellow rust) from healthy
ones with an overall accuracy of 96%. However, spec-
tral reflectance signatures are very specific to the source
of reflection (e.g. specific to the pathogen infecting a
certain species or specific to the content of biochemical
compounds of a leaf) and more research is required to
explore the utility of these approaches for other
pathosystems.
The present study builds on the fact that spectral

information (including visible light) is reflected by leaf
surfaces. This reflection was captured with an optical
sensor and portrayed as a waveform (intensity versus
wavelength). Waveforms from different plant pathogens
are likely to vary in distinct sections of the light spec-
trum, e.g. in the visible portion (VIS, 400–700 nm),
where the bright, orange-yellow urediniospores of myrtle
rust would potentially cause variation in reflectance. For
myrtle rust, no efforts have yet been made to investigate
its specific spectral reflectance signature. Consequently,
the aim of this study was to test whether it is possible
to spectrally discriminate na€ıve, fungicide-treated and
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infected leaves of B. citriodora trees. In this study the
following questions were addressed:

(i) Can the spectral response of na€ıve and fungicide-
treated B. citriodora individuals be distinguished
from ones displaying infection symptoms of
A. psidii (myrtle rust)?

(ii) Amongst all predictor variables (wavebands), what
are the most useful wavebands for discriminating
spectral responses of these classes?

Materials and methods

Study site

Spectral reflectance signatures of lemon myrtle leaves were mea-
sured at two locations in subtropical eastern Australia. The first

site was a commercial lemon myrtle plantation in northern

NSW (lat. �28.691, long. 153.295) and the second site was the

Australian Botanic Garden at Mount Annan (lat. �34.071, long.
150.766), 800 km south of the plantation, also in NSW near

Sydney. At the plantation site, the mean annual temperature is

19.4 °C and mean annual rainfall 1343 mm, while a mean
annual temperature of 16.7 °C and mean annual rainfall of

792.4 mm have been recorded at the botanical garden (Aus-

tralian Government Bureau of Meteorology, 2017). The planta-

tion site was selected to take advantage of an existing
experiment in which the impact of fungicide was being mea-

sured on lemon myrtle trees affected by myrtle rust. The planta-

tion had trees that were free of active disease symptoms, having

had fungicide successfully applied to them (‘treated’ trees), and
‘untreated’ trees, showing symptoms of active myrtle rust infec-

tion. Treated trees could potentially have been infected previ-

ously with myrtle rust (prior to fungicide application) and thus
the leaves may have had necrotic lesions even after killing the

fungus by fungicide treatment. Consequently, the botanical gar-

den was chosen as an additional field site: it offered plants in a

region that suffers only rare episodes of myrtle rust, and were,
therefore, free from infection and corresponding symptoms (here

deemed ‘na€ıve’ trees).

Trees sampled at the plantation were approx. 2 m tall and

pruned regularly into a pyramid shape to get maximal sunlight
and increase foliage production rates. The sampling area was

composed of nine rows of trees with the treated and untreated

trees separated by buffer rows (Fig. 1a). Plants at the botanical
garden were not managed and varied in their habits. In general,

they were approximately 2–3 times taller, produced larger,

tougher leaves, and were planted in clusters instead of rows.

Including these plants from a different location (and provenance,
most probably) added an unknown degree of variation to the

spectral reflectance measured in this study. However, it gave a

valuable comparison, providing spectral signatures from the

same species that were not influenced by myrtle rust.

Spectral measurements

Spectral reflectance between 350 and 2500 nm was measured

using a portable, non-imaging spectroradiometer (Spectral Evo-

lution PSR+ 3500) with spectral resolutions of 3 nm up to
700 nm, of 8 nm up to 1500 nm, and of 6 nm up to 2100 nm.

The field spectrometer was set to 15 internal repetitions, mean-

ing that each spectrum was measured 15 times, in order to

reduce measurement variability. A leaf clip holder with a 3 mm

sample area, a built-in reflectance standard and a separate 5 W

light source (ILM-105) was used to take measurements, while
also keeping heat from the light source away from the plant

tissue. Heat stress could complicate the selection of relevant

wavebands by causing physiological, biochemical or molecular

changes in plants that would be represented in spectral reflec-
tance responses and mix with the stress signal caused by myrtle

rust infections.

At the plantation, from each of the two untreated and treated
rows of trees, leaves from five trees were selected to record

spectra at three sampling points: 180, 100 and 50 cm height

(Fig. 1b). Plants that appeared disturbed by close proximity to

frequently used management trails were avoided. For each sam-
pling point, one terminal shoot was selected and the first two

pairs (four leaves) of newly expanding leaves, just large enough

to apply the leaf clip accessory, were used to record the spectral

responses. The height-stratified sampling points were chosen on
both east- and west-facing sides of trees, in order to represent

the spectral response of a single tree most effectively. This

design resulted in 240 spectra from 240 leaves for each class

and 480 spectra in total at the plantation.
Spectra at the botanical garden were collected following the

same general procedure as on the plantation (i.e. height stratifi-

cation; east- and west-sampling). Ten na€ıve plants located in the
Myrtaceae beds of the garden were selected. In total, 240 spec-

tra of 240 na€ıve leaves were sampled, resulting in an overall

dataset of 720 spectra.

Analysis pipeline

After data collection, all analyses were conducted using the R
statistical platform (R Core Team, 2016) using several add-on

packages (detailed below). For transparency and reproducibility,

the full analysis, including figures and tables, can be repeated
using code and data archived at https://github.com/ReneHeim/

MyrtleRust-LemonMyrtle-Classification (https://doi.org/10.5281/

zenodo.1142944).

Preprocessing of spectral reflectance signatures

First, all wavelengths below 500 nm were deleted because they
contained intense spectral noise. Detection and removal of out-

lying spectra followed, using depth measures included in the

FUNCTIONAL DATA ANALYSIS AND UTILITIES (FDA) package (Febrero-
Bande & Oviedo de la Fuente, 2012). After the outliers had

been removed the final dataset consisted of 216 observations for

the na€ıve class, 236 for the treated class and 228 for the

untreated class (from the original 240 spectra per class).
Spectral resampling was used to reduce multicollinearity

between predictor variables. This reduced the spectral resolution

from 3–8 nm (2151 predictor variables) to a resolution of 10 nm

(202 predictor variables). Spectral resampling was carried out
using the PROSPECTR package (Stevens & Ramirez-Lopez, 2014).

Finally, first-order derivatives (FOD) of each spectral signa-

ture were calculated. FOD transformations of the spectral curve
are a commonly applied technique used to increase classification

quality by enhancing spectral features and minimizing random

noise (Demetriades-Shah et al., 1990).

Random forest classification

An ensemble machine learning method was used to assign each

spectrum to one of the three classes (i.e. na€ıve, treated,
untreated). Ensemble methods reduce variance by providing an
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outcome that is based on multiple independent classifiers. Here,

a random forest classifier (Breiman, 2001) was used. This

approach is based on multiple decision trees (Hastie et al.,
2009) and is nonparametric, because high-resolution spectral
data rarely meet the criteria for standard parametric tests. Sev-

eral studies, including the original paper by Breiman (2001),

have shown that random forest classifiers are a suitable tool for

analysing spectral and other high-dimensional, multicollinear
data (e.g. Immitzer et al., 2012).

For classification, the CARET package (Kuhn et al., 2017)

was used. Two parameters are primarily responsible for the

performance of a random forest classifier and must be tuned
depending on the dataset to be classified. First, the number of

randomly selected predictors to choose from at each split

(mtry) was optimized. Secondly, the number of trees generated
to gain a full ensemble (n-tree) was optimized. The dataset

was split 80:20 into training and test data subsets, and a 10-

fold repeated cross-validation was applied on the training

data. This approach breaks the data into 10 equal-sized frac-
tions: nine of them are used to build/train a tree, and then

used to predict the values of the 10th fraction, allowing the

user to estimate the training accuracy. This process was

repeated 100 times and the mean accuracy over these repeti-
tions was calculated.

By default, the accuracy of the training and validation process

was evaluated using the overall accuracy (OA) as a metric. OA
reflects the agreement between the reference and predicted

classes and has the most direct interpretation. However, it does

not provide information about the origin of an error (Kuhn &

Johnson, 2013). Here, an additional metric, the kappa statistic
(Cohen, 1960) is useful. Kappa can take on values between �1

and 1; a value of 0 implies no agreement between the observed

and predicted classes, while kappa of 1 indicates perfect concor-

dance of the model prediction and the observed classes. Landis
& Koch (1977) first defined the following standards for the

strength of agreement: kappa of 0 = poor; kappa 0.01–0.20 =
slight; 0.21–0.40 = fair; 0.41–0.60 = moderate; 0.61–
0.80 = substantial; and 0.81–1 = almost perfect. In addition to

kappa and OA, two further metrics were used that can indicate

class-specific errors, the producer accuracy (PA) and user accu-

racy (UA; Story & Congalton, 1986). PA is the number of cor-
rectly classified references for a class divided by the total

number of references of that class and, thus, represents the accu-

racy of the classification for a specific class. UA divides the num-

ber of correct classifications (predictions) for a class by the total
number of classifications (predictions) for that class. A high UA

means that spectra within that class can be reliably classified as

belonging to that class. UA is often termed to be a measure of

reliability, which can be also interpreted as the agreement

between repeated measurements within a class (Jones &

Vaughan, 2010).

Finally, all three classes, na€ıve (216 observations), treated

(236 observation) and untreated (228 observations) were classi-
fied based on 202 predictor variables (wavebands). The final

model parameters were tuned to mtry = 52 and n-tree = 2000

after the best classifier was identified using the training data.

Eventually, the test data (20% = 135 spectra) were used to vali-
date the classifier, using kappa, OA, PA and UA as accuracy

indices.

Waveband selection

Spectral datasets often contain thousands of predictor variables
(wavebands). Using all available wavebands at a time to make

a prediction is computationally intensive and problems with

multicollinearity are very likely. Waveband selection techniques

reduce the predictor space and provide a reduced set of wave-
bands that can be used in the same efficiency to predict the

response variable. Here, a first set of the most important

wavebands to classify na€ıve, untreated and treated trees was

identified to provide future studies a starting point for valida-
tion or further classification tests. While including the na€ıve

class in the waveband selection might be valuable to distin-

guish truly healthy trees from infected ones, the waveband
selection derived only for the classes untreated and treated

may be more relevant for detection systems applied on planta-

tions as na€ıve plants are unlikely to occur there. Waveband

selection was performed using the VSURF package in R (Genuer
et al., 2015).

Results

Random forest classification

In order to investigate whether it was possible to spec-
trally discriminate na€ıve, treated and untreated lemon
myrtle trees, 135 primary spectra (i.e. 20% of the data-
set) were analysed. The random forest classifier internally
compared the prediction to the known class information
of each spectral group, achieving a substantial prediction
accuracy according to the scheme of Landis & Koch
(1977): kappa = 0.68, OA = 79%. The procedure was
repeated using 135 FOD spectra, yielding markedly
improved accuracy (kappa = 0.92, OA = 95%). Accord-
ing to Landis & Koch (1977) these accuracies can be
considered almost perfect.

B B B BT TUU

X
X
X

X
X
X

X
X
X

X
X
X

X
X
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(a) (b)B

Figure 1 Sampling design. (a) An aerial image of the plantation site; the box highlights nine rows of Backhousia citriodora trees that had been

exposed to Austropuccinia psidii. Spectra were collected at three sampling points from both sides of each tree in rows that had been untreated (U)

or treated (T) with fungicide, separated by buffer trees (B). (b) One side of a single row with sampling points highlighted as crosses. At each

sampling point, the first two pairs of freshly expanding leaves, just large enough to apply the leaf clip accessory, were used to record the spectra.

Plants growing close to management trails (grey) were not used in this study.
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When evaluating the accuracy assessment in greater
detail (Table 1) it was found that the na€ıve (N) and trea-
ted (T) spectral responses received good PA values
(N = 79.1%, T = 87.2%) and UA values (N = 97.1%,
T = 75.9%). By contrast, spectral response from
untreated (U) trees received a slightly lower PA
(U = 68.9%) and UA (U = 67.4%), meaning that this
class-specific prediction was less accurate. For the FOD-
transformed spectra, all three class-specific accuracies
were excellent (UA: N = 100%, T = 90.0%, U = 95.3%;
PA: N = 97.7%, T = 95.7%, U = 91.1%).

Important wavebands for this classification

Many of the features useful for discriminating all three
classes (Table 2a, Fig. 2a,c) were within the shortwave
infrared region (SWIR; 1300–2500 nm), and this was
true for analyses based on primary spectra or on FOD
spectra. Considering other spectral regions, the visible
region (VIS; 400–700 nm) was more useful for discrimi-
nating primary spectra, and the near-infrared region
(NIR; 700–1300 nm) was more useful for discriminating
FOD spectra. Figure 2b, d and Table 2b highlight fea-
tures that were selected when comparing spectra col-
lected only at the plantation. By examining the NIR
region (Fig. 2a) and comparing the average spectral sig-
nature for na€ıve and treated, it can be observed that they

are more similar to each other than compared to
untreated.

Discussion

In this study, spectral signatures were compared of
lemon myrtle leaves from plants that had not been
exposed to A. psidii (na€ıve), from plants that were
infected and thus showing myrtle rust symptoms (un-
treated), and from plants that had been treated with
fungicide and had no obvious symptoms of active myrtle
rust (treated). Na€ıve trees were not available at the plan-
tation, so trees from a botanical garden in a separate
region were used. The spectral signatures of na€ıve trees
were expected to be more similar to those from treated
plants than to untreated plants, and indeed this was the
case. High NIR (700–1300 nm) reflectance is generally
an indicator for cellular integrity (Jensen, 2009). Thus,
the similarly high NIR reflectance in na€ıve and treated
plants in the present study suggest that A. psidii was not
present (or at least had not caused damage) in fungicide-
treated plants; if it had been present, it would have
caused damage in mesophyll cells (Morin et al., 2014)
and would have been detected in the NIR region. All
three groups were correctly classified, either using
primary spectral signatures (kappa = 0.68, OA = 79%),
or, with far higher accuracy, using FOD spectra
(kappa = 0.92, OA = 95%).
It was not surprising that the FOD spectra performed

better than primary spectral signatures, as FOD spectra
are in general better at resolving overlapping wavebands
and at reducing random noise (Demetriades-Shah et al.,
1990). Better performance of FOD than primary spectra
was also reported by Mutanga et al. (2004) in a study
focusing on biochemical indices of pasture quality in five
grass species. However, this is not the case in every
study. In a detailed investigation of spectral classification
techniques, Ghiyamat et al. (2013) showed that FOD-
based approaches showed least improvement (over pri-
mary spectra) in very complex datasets, and most
improvement in less complex datasets, but also that some
classification methods (e.g. Euclidean distance and Jef-
freys–Matusita distance) typically performed better than
others. Here, it was found that classification accuracy
was increased when using a random forest classifier com-
bined with FOD spectra. Classification accuracy using
primary spectra and a random forest classifier could still
be considered as substantial. Taken together with results
from other studies, it seems that both the choice of clas-
sification method and the number of classes included in
the classification influence whether FOD spectra improve
classification accuracy.
In another step in the present study, the number of

wavebands was reduced from 2151 to 202 to avoid
effects of multicollinearity; nevertheless, high classifica-
tion accuracies were still achieved. Therefore, it is reason-
able to assume that, as in other spectral datasets, some
wavebands contained redundant information (Thenkabail
et al., 2011). In addition, to avoid multicollinearity,

Table 1 Assessment of classification accuracy using (a) primary

spectra and (b) first-order derivative-transformed spectra

No. of

samples

Reference

Total

User

accuracy

(%)Na€ıve Treated Untreated

(a) Primary spectra

Prediction

Na€ıve 34 0 1 35 97.1

Treated 0 41 13 54 75.9

Untreated 9 6 31 46 67.4

Total 43 47 45 135

Producer

accuracy (%)

79.1 87.2 68.9 78.5

(b) First-order derivative-transformed spectra

Prediction

Na€ıve 42 0 0 42 100.0

Treated 1 45 4 50 90.0

Untreated 0 2 41 43 95.3

Total 43 47 45 135

Producer

accuracy (%)

97.7 95.7 91.1 94.8

Diagonals represent correctly classified groups, off-diagonals were

misclassified. The lower right cell contains the overall accuracy (no. of

correct classified groups⁄total no. of groups (135)). User accuracy and

producer accuracy are shown to provide class-specific accuracies.

Lemon myrtle trees were in the plantation, treated and untreated with

fungicide against myrtle rust, and in the botanical garden unexposed

to myrtle rust (naı̈ve).

Plant Pathology (2018)

Detecting myrtle rust 5



reducing the number of wavebands can have multiple
positive effects, for example (i) reducing long computa-
tion times, (ii) identifying critical wavebands specific to
host and pathogen, (iii) using these wavebands as input
parameters to improve classifiers, or (iv) to design dis-
ease-specific vegetation indices based on such a refined set
of wavebands (Thenkabail et al., 2011). For the pathosys-
tem in the present investigation (lemon myrtle–myrtle
rust), a preliminary set of wavebands was identified that
had higher relevance over other wavebands used in this
study.
Wavebands in the visible (VIS, 400–700 nm) and near-

infrared (NIR, 700–1300 nm) regions were most impor-
tant for distinguishing the three infection groups. The
visible domain (556–660 nm) often corresponds to

necrotic or chlorotic lesions, and a reduction in chloro-
phyll activity, while the red-edge (685–715 nm) can be
used to detect general symptoms of plant stress (Delalieux
et al., 2007). Some wavebands in the shortwave infrared
region (SWIR; 1300–2500 nm) were also found to be
important. Variation in this region has been linked to
changes in water content caused by air humidity or
water loss from lesions (Delalieux et al., 2007). In the
present study, many lesions were observed on untreated
(infected) leaves, very few, and probably old, on treated
leaves, and none on na€ıve leaves. The few lesions found
on the na€ıve leaves were probably caused by other biotic
or abiotic factors. These observations provide a possible
explanation why the waveband selection resulted in
wavebands within the SWIR regions. Consequently,
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Figure 2 Spectral signatures and selected features for spectra from lemon myrtle trees collected at the plantation and botanical garden (a, c) and

at the plantation only (b, d). Trees at the plantation were either treated or untreated with fungicide to eliminate myrtle rust, whereas trees at the

botanical garden were untreated but free from infection (na€ıve). Important wavebands (grey dashed vertical lines) are presented for primary spectra

(a, b) and their first-order derivatives (c, d). All plots emphasize a traditional subsetting of the electromagnetic spectrum to better assign the

features to a specific region and support interpretation of each feature. VIS, visible; NIR, near-infrared; SWIR, shortwave infrared.

Table 2 Selected features for the spectra collected from myrtle trees at the plantation, treated and untreated with fungicide against myrtle rust, and

from myrtle trees at the botanical garden unexposed to myrtle rust (na€ıve)

Spectral region Primary spectra FOD spectra

(a) Botanical garden and plantation (na€ıve, treated, untreated)

VIS 555, 605, 695, 715 —

NIR 725, 735, 755 795, 815, 825, 915

SWIR 1405, 1415, 1425, 1435, 1895, 2025, 2035, 2085,

2095, 2115, 2145, 2165, 2175

1435, 1445, 1455, 1665, 1775, 1805, 1815,

2145, 2225, 2295

(b) Plantation only (treated, untreated)

VIS 545, 555, 715 555, 625

NIR 725, 735, 745 795, 815, 845, 915

SWIR 1455, 1475, 1485, 2125, 2145, 2175 1645, 1655, 2145, 2225

FOD, first-order derivative; VIS, visible; NIR, near-infrared; SWIR, shortwave infrared.
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results of this study echoed those of Delalieux et al.
(2007), not only in the high classification accuracies
(80%) but also in finding similar wavebands important
for plant disease detection. The refined set of wavebands
listed in the present study are a first indication of which
wavebands might be unique for this pathosystem but,
without further refinement, they cannot be confidently
distinguished from general indicators of stress caused by
fungal pathogens.
There is increasing demand in precision agriculture for

differentiation between pathogen-related effects and
other stress-inducing factors (Mahlein, 2016). For exam-
ple, it may be necessary to refine spectral sets of data
down to some level where single wavebands can be con-
sidered unique for the system under investigation.
Amongst the important regions found in the present
study, that could be related to those found by Delalieux
et al. (2007), the wavebands 545, 555, 625, 745, 755
and 845 nm were also considered by Bravo et al. (2003)
to be important for successfully classifying spectral signa-
tures from healthy and yellow rust (P. striiformis)
infected wheat plants. Bravo et al. (2003) were limited
to using wavebands between 460 and 900 nm but could
still achieve classification accuracies of 96% using four
wavebands only (543, 630, 750 and 861 nm). As yellow
rust is a closely related family to A. psidii and the wave-
bands found in the present investigation are in close
proximity to those found by Bravo et al. (2003), it seems
reasonable to suggest that some of the selected wave-
bands might be unique for the lemon myrtle–myrtle rust
pathosystem. Further investigation would be needed to
confirm or disprove this suggestion.
The successful discrimination between spectral signa-

tures is only the first step towards using spectral
approaches to detect and monitor myrtle rust in the
lemon myrtle industry. A promising next step would be
the development of a disease-specific vegetation index
(Mahlein et al., 2013). Such indices allow land managers
a straightforward disease assessment by indicating, for
example, the level of infection. In theory, a disease-
specific spectral index for lemon myrtle–myrtle rust
pathosystem could be developed by refining the provided
set of wavebands. Sensor systems based on those specifi-
cations could be built and used in a plantation setting,
mounted on terrestrial or aerial vehicles, to detect infec-
tion hotspots and enable targeted fungicide application.
This would reduce the costs spent on fungicides, the
human-caused interassessor bias and also damage caused
by fungicides on vegetation in close proximity to the
crop of interest.
Austropuccinia psidii, has not previously been subject

to investigations using spectral sensor systems. The
results of the present study represent a proof-of-concept
for incorporating a spectral approach into a precision
farming tool used for the lemon myrtle industry as well
as other industries. The establishment of spectral libraries
of specific plant–pathogen interactions could enable land
managers to detect pathogens before symptoms are visi-
ble to the naked eye, accurately track the spread of

infection, objectively quantify disease severity and differ-
entiate pathogen-related effects from other stress-
inducing factors.
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